
Drawdown – the money you’ve lost since reaching your most recent high water mark – could well 
be the single most discussed aspect of risk in the world of investing – especially in the world of ac-
tive asset management. It represents money that once was within the investor’s grasp but now is 
gone. The active manager can be in drawdown 80 percent of the time. It causes active managers 
to wonder if their approaches to trading are flawed. It causes investors to wonder if their active 
managers will change the way they trade in an effort to protect themselves. And, several years ago, 
when we polled the investors at one of our early gatherings about what they considered the most 
important measure of risk, drawdown topped the list. In fact, it was the results of this informal poll 
that led us to publish Understanding drawdowns in 2004, and the model we developed there has 
served us well for eight years.

Even so, the work of trying to understand drawdowns can reveal astonishing insights into the way 
we think about risk. In this case, we have learned that failing to account for autocorrelated returns 
can lead to serious biases in 
our estimates of return vola-
tilities. Here is a case in point. 
While doing some work on 
pension fund investments, 
we raised the question about 
why drawdowns in equities 
can be so much deeper and 
last so much longer than one 
would expect given their vol-
atility. In the upper panel of 
Exhibit 1, we have drawn two 
net asset value series – one 
for global equities and one 
for CTAs – in a way that im-
parts to each a mean return 
of 5% and a return volatility 
of 15% based on monthly re-
turns. (See the appendix for a 
description of how these two 
series were derived.)

It is clear to the eye, 
though, that these two se-
ries are very different and 
that equities exhibit much 
more risk. The difference, as 
we will show in this note, can 
be explained by the fact that 
equity returns tend to exhib-
it positive autocorrelation 
while CTA returns tend to exhibit negative autocorrelation. As a result, the standard square root 
of time rule that the industry uses to translate daily, weekly, or monthly volatilities into annualized 
volatilities is wrong and produced biased results. 
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Exhibit 1
Net asset values for two return series
(annualized mean = 5%, annualized volatility = 15%) 

Distribution of maximum drawdown depths for return series with 
non-zero autocorrelations
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The effects of autocorrelation can be huge. In the lower panel of Exhibit 1, we have drawn two maxi-
mum drawdown distributions. Underlying assumptions about length of track record, mean return and 
return volatility are the same in both cases, but the expected maximum drawdown with the positive 
autocorrelation shown by equities is nearly double that for an asset with the negative autocorrelation 
shown by CTAs. 

The main conclusions of this round of work are these:

q	CTA index returns in general, and the returns of trend following CTAs in particular, seem to ex-
hibit negative autocorrelations that are both statistically significant, persistent through time, 
and persistent across trend following CTAs.

q	For trend following CTAs, our failure to incorporate autocorrelation into our volatility measures 
has produced estimates that are much too high. The 15% return volatility for CTAs in Exhibit 1 
really should be closer to 9.4%. (And the 15% return volatility for global equities should be closer 
to 17.9%.) 

q	By incorporating autocorrelation estimates into our drawdown model, we can produce much 
better estimates of the kinds of drawdowns we should expect for all liquid hedge fund strate-
gies, not just trend following CTAs. 

q	As long as one does it with care, one can use autocorrelation estimates as an effective diagnos-
tic tool to uncover influences on return volatilities that otherwise could take decades to find. 

In the note that follows, we

q	Describe the data sets that we used to establish the presence and persistence of autocorrela-
tion in CTAs’ returns

q	Present a drawdown puzzle involving the 67 CTAs who had ever appeared in the Newedge CTA 
Index that brought the importance of autocorrelated returns to our attention

q	Show how autocorrelated returns provide the key to unlocking the puzzle and the effect autocor-
relation has on the way we should translate single-period volatilities into multi-period volatilities.

q	Report on what we found when we examined other data sets of CTA returns.

q	Return to the global equity/CTA comparison and conclude the note with an analysis of how au-
tocorrelation affects risk and biases our measures of risk-adjusted returns in a potentially big way. 

The data sets we used to establish the presence and persistence of 
autocorrelated returns
When we first presented our findings on autocorrelated returns and their importance for drawdowns 
and risk measures, the data we used were mainly monthly returns for the 67 CTAs who had ever ap-
peared in the Newedge CTA Index. Because these are among the largest and most successful CTAs in 
the industry, this was a respectable data set. Most of the questions, though, focused on whether the 
results would hold up in the face of other data and on whether the results were stable through time. 
Here are descriptions of the data we’ve used. 

A concatenated CTA index (January 1990 through July 2012)
This index – modified to produce a 5% mean return and a 15% return volatility – appears in Exhibit 1. To 
construct this index, we chained together the Barclay CTA index from 1990 through December 1999 and 
the Newedge CTA index from January 2000 through July 2012. While the Barclay CTA index comprises 
a much broader set of CTAs than does the Newedge CTA index, they correlate well with one another 
and are both free of most of the biases that affect indexes of self-reported returns. 

CTAs that have appeared in the Newedge CTA Index 
This was a natural data set for us to use. The index is based on returns of the 20 or so largest CTAs that are 
open for business and willing to provide daily return data. The index went live January 2000 and since 
then 67 different CTAs have been used in the calculation of the index. Because the number of CTAs is 
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relatively small in this case and because we know them 
so well, it was easy for us to create two subsets – one 
for trend followers and one for non-trend followers. Our 
classification was based chiefly on reputation and con-
firmed correlation. 

For each CTA, we used the full track record available 
to us beginning with January 1977. Exhibit 2 shows 
how the number of CTAs in this set reporting returns 
during any given year varied through time. As the ex-
hibit shows, the number of CTAs increased more or less 
without interruption until 2006 and 2007. A history of 
adds and drops is provided as well. 

All CTAs with $50 million and a 3-year track 
record
To determine whether what we found with the 67 CTAs 
in the previous data set would hold up in a broader 
data set, we pulled together a data set that comprised 
the returns of all CTAs who ever had $50 million under 
management and a three-year track record. A summary 
tally of the population of this set is provided in Exhibit 
3. Altogether, the set includes the returns of 783 CTAs. 
A summary tally of how this data set evolved is pro-
vided in Exhibit 3. 

A complete description of the work that went into 
assembling these data will be provided in a separate 
note. For now, it is enough to note that special care was 
taken to avoid duplications and to isolate what would 
be the lead program for each CTA. 

A mini trend index
To mimic the approach we used to identify trend and 
non-trend managers in the Newedge CTA Index (ie. rep-

utation and correlation), we needed to create a trend-following index with a much longer track record 
than that of the Newedge Trend Sub-Index. In doing so, we identified five well-known trend followers 
with continuous monthly returns from February 1988 through July 2012. From these five return series, 
we constructed an equally weighted index that we rebalanced at the end of each year. 

While this index helped us to sort the larger data set based on correlation it was also used to check 
for persistence in autocorrelation though time. 

The Newedge Trend Indicator
The last data set we have is not a CTA, but the Newedge Trend Indicator, which uses a 20/120 mov-
ing average trend following model to trade 55 markets that fall into four sectors – equities, currencies, 
interest rates and commodities. The construction of this index is described in Two Benchmarks for Mo-
mentum Trading. 

Our findings
The focus of this section is on the importance of autocorrelated returns for the ways we think of risk 
and how we can use estimates of autocorrelation to improve our expectations for drawdowns and 
other measures of risk. 
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Exhibit 2
Tallies for Newedge CTA Index constituents
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A second empirical puzzle
This work was inspired by two empirical problems. The first, we described in the introduction. That is, 
why could two return series – one for equities and one for CTAs – with identical means and volatilities 
produce such wildly different drawdown experiences. 

A second was what we found when we used 
our drawdown model to predict what various CTAs’ 
maximum drawdowns should have been. For this 
exercise, we used all CTAs who had ever been part 
of the Newedge CTA Index anytime from 2000 
through April 2012. In all, there were 67 CTAs of 
whom 25 would generally be recognized as trend 
followers. For each of these CTAs, we used the entire 
recorded track record irrespective of when it was in-
cluded in the index. In each case, we calculated the 
CTA’s mean return and return volatility and used the 
length of the CTA’s track record to reckon his expect-
ed maximum drawdown. 

What happened when we did this is shown in 
Exhibit 4 where we plot each CTA’s expected maxi-
mum drawdown against the realized maximum 
drawdown. The upper right hand corner in this 
exhibit represents 0, and drawdowns are shown 
in negative numbers with expected drawdowns 
measured along the vertical axis and realized draw-
downs measured along the horizontal axis. The line 
that runs from the lower left hand corner to the 
upper right hand corner shows where the two are 
equal. For any observation below the line, the re-
alized maximum drawdown was smaller than the 
model predicted. For any observation above the line, 
the realized drawdown was larger than predicted. 

The puzzle that leaps off the page most clearly is 
that with only two exceptions, the trend following 
CTAs’ realized maximum drawdowns were smaller 
than the model predicted. One doesn’t really need 
much more convincing that something is up, but 
in Exhibit 5, we show the p-values for the trend fol-
lowing CTAs. If our drawdown model were doing 
well, these p-values would follow a more or less 
straight line from the lower left hand corner to the 
upper right so that the values would be uniformly 
distributed from 0.00 to 1.00 with two or three CTAs’ 
results falling in each 0.10 band. But what we see is 
that all but two of the values were less than 50% and 
most of these were less than 20%. (The numeric la-
bels along the horizontal axis in this exhibit and the 
next represent the CTAs’ places on our original list 
and bear no relationship to any ordering related to 
name, return, volatility, or age.)

Actually, a less obvious but related puzzle in-
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Expected and observed maximum drawdowns for components 
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Exhibit 5
p-values of observed maximum drawdowns for CTA Index trend 
components 
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volves our results for non-trend CTAs. In this case, the 
dots are at least scattered around the line in Exhibit 4, 
which is encouraging. But some of the dots are too far 
away from the line. The evidence for this is shown in 
Exhibit 6, which shows the non-trend CTAs’ p-values 
for this exercise. What stands out here is that while 
the p-values seem to be stretched out along the diag-
onal from lower left to upper right, four of the 42 CTAs’ 
had p-values that were 100% or only slightly less. And 
that’s too many. 

Estimates of autocorrelation
To be honest, autocorrelated returns were not on our 
original list of things that might explain what’s going 
on in these two puzzles. More likely, we thought, the 
cause would be in variable volatility or something else 
that was not stationary. But none of what we tried 
produced any useful results. And so we turned to auto-
correlation and seem to have found a plausible answer. 

For example, consider the autocorrelation pat-
tern for Trend follower #9 (TF9), whose p-value was 
next to lowest. We chose #9 partly because of its low 
p-value and partly because this CTA’s maximum draw-
down was furthest from its expected value in Exhibit 
4. When we estimated the correlations between one 
month’s returns and returns from one to five months 
earlier (say, TF9’s June return with TF9’s May, April, 
March, February, and January returns), the pattern 
of estimates we found was what you see in Exhibit 
7. The first correlation was positive, but the rest were 
all negative. To provide some idea of statistical sig-
nificance, we have shown 2-standard-deviation lines 
for the length of track record we used for this CTA. As 
you can see, the negative values were all significant or 
close to significant. 

[Note: In what we report in this note, we limited our 
estimates to five lags, mainly because for most of the 
CTAs we examined, the size and significance of esti-
mates beyond five lags tended to be small.]

What we found when we estimated autocorrela-
tion structures for the other trend followers is shown 
in Exhibit 8. The vertical bars comprise shorter bars 
that represent the value of the autocorrelation value 
for each of the five lags. The graphic is useful in two 
ways. First, it shows that the patterns of positives and 
negatives could vary across CTAs. Second, and more 

importantly, it is easy to see that the net autocorrelation values – that is, the sum of the negatives and positives – were mainly 
negative for the trend following CTAs. 

In contrast to Trend follower #9, consider what we found for Non-trend follower #3 (Non-TF3) in Exhibit 9. The p-value for 
this CTA was 1.00, which means that this CTA’s realized maximum drawdown was far greater than our theoretical maximum 
drawdown distribution would have suggested was possible. And, when we estimate autocorrelations for Non-TF3, we came 
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Exhibit 7
Autocorrelations for trend CTA #9
(Sum of correlations = -0.42)
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Autocorrelations for trend components
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up with the pattern shown in Exhibit 9. In this case, the 
first two correlations appear to be both positive and 
statistically significant.

What we found when we estimated autocorrela-
tion structures for the 42 non-trend followers is shown 
in Exhibit 10. In this case, there is no systematic bias, 
at least in terms of sign. Some are positive. Some are 
negative. And so the fact that realized drawdowns for 
the non-trend set were scattered around the expected 
drawdown line in Exhibit 4 makes sense. 

The scandal of the square root of time rule
At the heart of this note is the industry’s failure to take 
autocorrelation into account when converting esti-
mated daily, weekly, or monthly volatilities into the 
annualized volatilities that are used for risk assessment. 

In practice, the convention is to calculate, say, a daily price or return volatility (that is, the standard de-
viation of daily price changes or returns) and multiply the result by the square root of the number of 
business days in a year – usually something in the neighborhood of 2561/2. If one is using weekly price 
changes or returns, one would use the square root of 52. And with monthly returns, the multiplier 
would be the square root of 12. 

This square root of time rule comes from the fact that the variance of the sum of a bunch of random, 
unrelated variables is equal to the sum of the variances of those same random, unrelated variables. 
And if we think that the variance of returns is the same from day to day, week to week, or month to 
month, this would look like
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calculations are shown in Exhibit 11 as the autocorrelation adjustment to volatility, which we have 
calculated by plugging the various sums of autocorrelations into the expression (1 + 2 x sum of 
autocorrelations) and taking the square root.  The 0.00 adjustment ratio that goes with a correlation of -0.5 
highlights the fact that the theoretical lower limit when autocorrelations is negative is -0.5.   Notice that 
the only case for which the conventional and correct volatility calculations are the same is the one for 
which the sum of the autocorrelation values is zero.  This is when the independence assumption holds, so 
this is when the standard square root of time rule works. 
 
The table explains why the volatility calculation for TF9 was too high.   In this case, the correlations 
summed to -0.42, which means that the correct value for TF9’s volatility would be less than 0.45 of what 
the standard square root of time rule would yield.  In other words, the standard approach produces a 
volatility that is more than 2 times too large.   
 
On the other hand, the sum of the autocorrelation factors for Non-TF3 was +0.42.  In this case, the 
adjustment would be a little over 1.34, which means that the correct volatility estimate for this CTA 
should be more than 34% larger than what is produced by the standard approach.   
 
Second puzzle resolved 
 
We are now ready to apply what we have learned about autocorrelation to our drawdown model.  Exhibits 
12 and 13 show the effect of including autocorrelation factors in our models.   
 
In the first instance, we have drawn two maximum drawdown distributions for TF9 – one without 
allowing for autocorrelation and one in which autocorrelation is taken into account.   Our original 
drawdown model would use length of track record (321 months), mean return (17.9%), and annualized 
volatility of returns (34.4%) as its inputs.  And with these values, the maximum drawdown distribution is 

where ρi represents the correlation of one period’s returns with returns from 1 through k periods ago, 
and n is quite a bit bigger than k. 

Typically, we assume that these correlations are zero – that the returns from one period to the next 
are independent of one another – and blow off the term in parentheses. We use a squiggly equals sign 
to alert the reader to the fact that this relationship is an approximation that improves as the sample 
size (n) gets large relative to number of autocorrelation lags (k). In practice, each of the autocorrelation 
values is multiplied by a value equal to (n-i)/n, where i is the number of the lag (in our case, somewhere 
between 1 and 5). With 5 monthly lags, the effect of this weighting is to reduce the value of 2.0 to 1.75 
if one has 24 months of data. If one has 60 months of data, the 2.0 would be reduced to 1.90. But with 
the autocorrelation values we have found in this round of work, the standard square root of time rule 
produces annualized volatility estimates that are either much too high or much too low. Consider what 
happens to annualized volatility calculations for different values of ρi. In Exhibit 11, we compare the 

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Non-trend CTA index

Es
tim

at
ed

 a
ut

oc
or

re
la

tio
ns

Lag-5
Lag-4
Lag-3
Lag-2
Lag-1 Source: Barclay Hedge, Newedge Alternative Investment Solutions

Exhibit 10
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volatilities that one would get using an estimated monthly 
volatility or standard deviation of 4.33% (which is 15% divid-
ed by the square root of 12). 

The size of the wedge that autocorrelation drives be-
tween the conventional and correct volatility calculations 
are shown in Exhibit 11 as the autocorrelation adjustment to 
volatility, which we have calculated by plugging the various 
sums of autocorrelations into the expression (1 + 2 x sum of 
autocorrelations) and taking the square root. The 0.00 ad-
justment ratio that goes with a correlation of -0.5 highlights 
the fact that the theoretical lower limit when autocorrela-
tions is negative is -0.5. Notice that the only case for which 
the conventional and correct volatility calculations are the 
same is the one for which the sum of the autocorrelation 

values is zero. This is when the independence assumption holds, so this is when the standard square 
root of time rule works.

The table explains why the volatility calculation 
for TF9 was too high. In this case, the correlations 
summed to -0.42, which means that the correct 
value for TF9’s volatility would be less than 0.45 of 
what the standard square root of time rule would 
yield. In other words, the standard approach pro-
duces a volatility that is more than 2 times too large. 

On the other hand, the sum of the autocorre-
lation factors for Non-TF3 was +0.42. In this case, 
the adjustment would be a little over 1.34, which 
means that the correct volatility estimate for this 
CTA should be more than 34% larger than what is 
produced by the standard approach. 

Second puzzle resolved
We are now ready to apply what we have learned 
about autocorrelation to our drawdown model. 
Exhibits 12 and 13 show the effect of including au-
tocorrelation factors in our models. 

In the first instance, we have drawn two maxi-
mum drawdown distributions for TF9 – one without 
allowing for autocorrelation and one in which au-
tocorrelation is taken into account. Our original 
drawdown model would use length of track record 
(321 months), mean return (17.9%), and annualized 
volatility of returns (34.4%) as its inputs. And with 
these values, the maximum drawdown distribu-
tion is centered around 60%. When we incorporate 
negative autocorrelation, though, the drawdown 
distribution is shifted quite a bit to the right and is 
now centered around a value slightly larger than 
40%. And with this distribution, the observed max-
imum drawdown of -43.6% appears to be more 
comfortably in the middle. 

When we work with Non-TF3, we find that the 

Exhibit 11				  
The wedge that autocorrelation drives between conventional
and correct calculations of annualized volatility		

Monthly 
volatility

Sum of 
autocorrelations

Autocorrelation 
adjustment to 

volatility

Annualized 
volatility

without AC with AC
4.33% -0.5 0.00 15% 0.00%
4.33% -0.4 0.45 15% 6.71%
4.33% -0.3 0.63 15% 9.49%
4.33% -0.2 0.77 15% 11.62%
4.33% -0.1 0.89 15% 13.42%
4.33% 0 1.00 15% 15.00%
4.33% 0.1 1.10 15% 16.43%
4.33% 0.2 1.18 15% 17.75%
4.33% 0.3 1.26 15% 18.97%
4.33% 0.4 1.34 15% 20.12%
4.33% 0.5 1.41 15% 21.21%

Source: Barclay Hedge, Newedge Alternative Investment Solutions
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Exhibit 12
Maximum drawdown distributions for trend #9 
(track record = 321 months, mean = 17.9%, volatility = 34.4% , observed 
max DD = -43.61%)
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Exhibit 13
Maximum drawdown distributions for Non-trend CTA #3 
(track record = 108 months, mean = 7.5%, volatility = 5.3% , observed max 
DD = -14.8%)
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presence of autocorrelation shifts the maximum 
drawdown distribution noticeably to the left. Using 
inputs of track record (108 months), mean return 
(7.5%), and annualized return volatility (5.3%), we 
find that the distribution is center somewhere close 
to 5%. When we allow for positive autocorrelation, 
however, the distribution shifts out and is centered 
over something closer to 8%. And this manager’s 
maximum drawdown of -14.8%, while it is toward 
the upper end of the distribution, is more probable 
than it would have been with the original distribu-
tion. 

We also find that the empirical puzzle presented 
in Exhibit 4 is mainly corrected when we use the new 
drawdown model to reckon expected maximum 
drawdowns. In Exhibit 14, we have plotted expected 
versus realized maximum drawdowns for the original 
set of CTAs, but this time we have used their respec-
tive autocorrelation estimates when calculating the 
expected maximum drawdown for each. 

This approach produces two good outcomes. First, 
the trend followers’ values are now scattered above 
and below the line rather than almost entirely under 
the line. Second, the non-trend followers’ values are 
now scattered closer to the line. In both cases, the 
resulting differences between experience and expec-
tation exhibit more reasonable variability. 

Extending the work to a broader data set
To address the question of whether what we found 
in the first round of work was an accident of the data, 
we tackled the problem of working with a much 

more comprehensive set of data for a total of 783 CTAs. 

Working with this set posed a special challenge because we could not know each of the 783 CTAs 
as intimately as we knew the 67 larger, well established CTAs who had been part of the Newedge CTA 
Index. At the same time, it allowed us a chance to approach the problem of classification in a slightly 

different way. And, as a result, we uncovered more 
useful insights into the relationship between trend 
following and autocorrelated returns. 

The first step in working with this data set was to 
construct what we call a “mini trend index” that could 
serve as a benchmark for trend following behavior. To 
do this, we identified five CTAs who have always been 
known as trend followers and whose track records 
were available for an extended history. As it was, we 
were able to start this mini trend index in February 
1988 and run it through July 2012, which is the last 
month used in this work. As a reasonableness check 
on whether this mini trend index could serve as a le-
gitimate proxy for trend followers, we plotted monthly 
returns for the mini trend index against monthly re-
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Exhibit 14
Expected and observed maximum drawdowns for components of 
the Newedge CTA Index with allowance for aucorrelations
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Correlation between Newedge Trend Subindex and mini trend 
index
 (January 2000 through July 2012, rho = 94.7%)
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Exhibit 16
Autocorrelations for the mini trend index and its components
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turns for our Newedge Trend Sub-index and found a 
correlation of 94.7%. The scatter is shown in Exhibit 15 
and shows monthly returns from January 2000, which 
is the first month for which the trend subindex data 
were available. And, out of curiosity, we calculated the 
autocorrelation factors for the five CTAs used in the 
mini trend index and came up with the results shown 
in Exhibit 16. For the index itself and for two of the com-
ponent CTAs, all of the autocorrelation factors were 
negative. For three of the CTAs, one of the five lagged 
correlations was positive. But on balance, the autocor-
relations for all five were negative. 

We then calculated the correlation of each of the 783 
CTAs’ monthly returns with those on the mini trend in-
dex and ordered them from highest to lowest. The next 
step was to use each CTA’s own track record to calculate 

autocorrelation factors. The results of these two exercises are overlaid on each other in Exhibit 17. The 
sum of the first five autocorrelation factors is measured on the left vertical axis. The correlation of each 
CTA with the mini trend index is measured on the right vertical axis. 

The results are really quite astonishing. The CTAs with the highest correlation to the mini trend index 
are on the left and consistently exhibit negative autocorrelations. This seems to be true for the first 200 
or so CTAs on the left. Then, as correlation with the mini trend index falls, the sum of a CTA’s autocorre-
lation factors tends to rise. A visual scan of the results suggests that the next 200 CTAs are distributed 
more or less evenly around the zero autocorrelation line. Then, when correlation with the mini trend in-
dex falls to 0.25 and below, the sums of the remaining CTA’s autocorrelation factors are mainly positive. 

A quick comment about the sizes of the autocorrelation values is probably in order. The negative 
numbers look smaller than the positive numbers, but in fact there is a kind of asymmetry here. First, 
as noted above, it is important to know that the theoretical lower bound for autocorrelations is -0.5. 
Anything smaller than this would imply a negative variance, which might be interesting but is not pos-
sible. So an average of roughly -0.25 for the CTAs who would be grouped as trend followers is roughly 
halfway between zero and the theoretical limit. And if we apply this number using

7	
  

distributed more or less evenly around the zero autocorrelation line.  Then, when correlation with the mini 
trend index falls to 0.25 and below, the sums of the remaining CTA’s autocorrelation factors are mainly 
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roughly halfway between zero and the theoretical limit.  And if we apply this number using 
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We would find that the variance (not the volatility) would be just half of what the normal expansion for 
single-period to multi-period would produce.   
 
On the positive side, the theoretical upper limit of the sum for five autocorrelation factors would be +2.5 
– which would represent a correlation of 0.5 for each of the five factors.  As it is, there are some stray 
large values, some of which exceed the theoretical upper limit.  These can be the result of sampling error 
or variable volatility in the underlying series, but they cannot be used in any applied work or simulations.  
Generally, however, for those CTAs with correlations to the mini trend index below 0.25, the average 
value was in the neighborhood of +0.50.  And if we apply this number, we find that the variance would be 
double that we would get without considering autocorrelations.   So at least in variance terms, values of 
half and double are mirror images of each other.   
 
Autocorrelation and the Newedge Trend Indicator 
 
The Newedge Trend Indicator is not a CTA, but it does represent a trend following model that correlates 
well with the returns of well recognized trend followers.  So, as a final piece of evidence, we calculated 
the autocorrelation factors for this model’s returns.  The results of this exercise are shown in Exhibit 18.  
Although none of the factors is significantly negative, the pattern of mainly negative values suggests that 
the force is at work here as well.   
 
 
 
The question of persistence 
 
As it is, we have found evidence of significant autocorrelation in all of the data we have been able to 
assemble.  There remains, however, the question of whether it is persistent.  To address this question, the 
best data set we have comprises the returns of the five trend followers that we used to construct the mini 
trend index.  The advantage of this set is it length and consistency.  We have uninterrupted return series 
for all five going back to 1988, and so we don’t have to worry about changes in the composition of our 
data.   
 
For these CTAs, we used 60-month rolling periods to calculate the average value of each autocorrelation 
factor from lag 1 to lag 5, and from these we also calculated the sums.  These six time series are charted 
in Exhibit 19.  One notices at least two things in these histories.  First, the estimated values can vary quite 
a lot over time, and, in some instances can be positive for an individual manager.  Second, and most 
important, the sum of the five individual sums has never been positive and seems to have been roughly 
stable in the area of -0.20, plus or minus, from the late 90s on.   
 
The choice of a 60-month rolling estimation period was influenced in part by the time it takes to detect 
autocorrelation with any kind of statistical reliability.  The standard deviation of a single correlation 
estimate when the true correlation is zero is roughly one over the square root of the number of 
observations, or n-1/2.  With 60 months, the standard deviation would be about 0.13 [ = 60-1/2 ], which 

we would find that the variance (not the volatility) would be just half of what the normal expansion for 
single-period to multi-period would produce. 

On the positive side, the theoretical upper limit of the sum for five autocorrelation factors would 
be +2.5 – which would represent a correlation of 0.5 for each of the five factors. As it is, there are some 
stray large values, some of which exceed the theoretical upper limit. These can be the result of sam-
pling error or variable volatility in the underlying series, but they cannot be used in any applied work 
or simulations. Generally, however, for those CTAs with correlations to the mini trend index below 0.25, 
the average value was in the neighborhood of +0.50. And if we apply this number, we find that the 
variance would be double that we would get without considering autocorrelations. So at least in vari-
ance terms, values of half and double are mirror images of each other. 

Autocorrelation and the Newedge Trend Indicator
The Newedge Trend Indicator is not a CTA, but it does represent a trend following model that correlates 
well with the returns of well recognized trend followers. So, as a final piece of evidence, we calculated 
the autocorrelation factors for this model’s returns. The results of this exercise are shown in Exhibit 18. 
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Exhibit 17
Sum of first five autocorrelations for CTAs
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Although none of the factors is significantly negative, 
the pattern of mainly negative values suggests that the 
force is at work here as well. 

The question of persistence
As it is, we have found evidence of significant auto-
correlation in all of the data we have been able to 
assemble. There remains, however, the question of 
whether it is persistent. To address this question, the 
best data set we have comprises the returns of the 
five trend followers that we used to construct the mini 
trend index. The advantage of this set is it length and 
consistency. We have uninterrupted return series for all 
five going back to 1988, and so we don’t have to worry 
about changes in the composition of our data. 

For these CTAs, we used 60-month rolling periods 
to calculate the average value of each autocorrelation 
factor from lag 1 to lag 5, and from these we also cal-
culated the sums. These six time series are charted in 
Exhibit 19. One notices at least two things in these his-
tories. First, the estimated values can vary quite a lot 
over time, and, in some instances can be positive for an 
individual manager. Second, and most important, the 
sum of the five individual sums has never been positive 
and seems to have been roughly stable in the area of 
-0.20, plus or minus, from the late 90s on. 

The choice of a 60-month rolling estimation period 
was influenced in part by the time it takes to detect 
autocorrelation with any kind of statistical reliability. 
The standard deviation of a single correlation estimate 
when the true correlation is zero is roughly one over the 
square root of the number of observations, or n-1/2. With 
60 months, the standard deviation would be about 0.13 
[ = 60-1/2 ], which means that five years or 60 months is 
about the amount of time needed to detect an overall 
correlation of 0.25. 

Why investors should care about autocorrelation
Perhaps the single most important reason to pay at-
tention to autocorrelated returns is that if we do, we 
can get better ideas of the riskiness of various assets in 
our portfolios. If we return to the normalized net asset 
value series for world equities and CTAs shown in up-
per panel of Exhibit 1, which we have reproduced here 
as Exhibit 20, we can reconsider the way we compare 
the two series. 

The eye tells you that these two series represent 
entirely different kinds of risk. And if we estimate the 
autocorrelation structure for the two, what we find is 

shown in Exhibit 21. The autocorrelation values for world equities are generally positive and sum to 
+0.21. In contrast, the autocorrelation values for CTAs are generally negative and sum to -0.31. 
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Exhibit 18
Autocorrelations for Newedge Trend Indicator
(January 2000 through July 2012)
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Exhibit 19
60-month rolling autocorrelations for mini trend index components
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Exhibit 20
Net asset values for two return series
(annualized mean = 5%, annualized vol = 15%) 
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And so, even though the standard square root 
of time rule produces annualized volatilities of 15% 
for both series when applied to monthly volatilities, 
we know that the correct volatilities are higher for 
equities and lower for CTAs. Knowing this, our expec-
tations for drawdowns are much different for the two. 
As shown in Exhibit 22, it is now perfectly plausible 
that equities could produce 50% drawdowns as they 
did in the past decade. 

It also makes sense that we should revise the way 
we calculate risk-adjusted returns. As shown in Exhibit 
23, the ratios of return to risk would be 0.33 for both 
equities and CTAs if we ignore autocorrelation. But 
we see that the correct volatility estimate for equi-
ties is really just over 18%, while the correct volatility 
estimate for CTAs is just under 10%. As a result, if we 

calculate the return/risk ratios taking this into account, we find that the ratios are far from the same. For 
equities, the ratio is now 0.28, while for CTAs, the ratio is 0.53 – almost double that of equities. 

Another way to think of the riskiness of the two assets is reflected in Exhibit 24, which shows the 
results of running the following experiment, which would be relevant for a defined benefit plan. In 
each case, we started with $1,000 and then withdrew $50 a year (or really $4.17 a month) to pay a fixed 

cash obligation. The $50 corresponds to the 5% re-
turn assumed for each asset. We then simulated the 
distribution of outcomes for these two assets over 
a horizon of 270 months, which corresponds to the 
histories we have used in this note. 

The two distributions are instructive, in part be-
cause they drive home the point that if insolvency 
or bankruptcy is a possibility, then standard devia-
tions alone are not an adequate measure of risk. In 
this exercise, insolvency occurs whenever the value 
of the asset drops below $4.17 and the fund cannot 
meet its obligation. 

We also see that an investor’s evaluation of risk 
requires some estimate of the costs of insolvency. In 
the equities example, the probability of insolvency 
was 21.7% [ = 100% - 78.3%, which is the probabil-

ity of survival]. For CTAs, the probability of insolvency was 4.0% [ = 100% - 96.0% ]. On the other hand, 
the expected value of the asset if it is still solvent at the end of the period was $2,519 for equities but 
only $1,224 for CTAs. The difference between these two expectations may be part of the reason that 
so many defined benefit public employ pension plans are invested so heavily in equities. 

Using autocorrelation as a diagnostic
For those investors who are interested in having the best avail-
able measures of risk at their disposal, the possibility of using 
autocorrelation estimates to detect biases in standard volatility 
measures is good news. At least it is fairly good news. The chal-
lenge is that detecting autocorrelation takes time, and the time 
it takes may be longer than many risk evaluation horizons allow. 

On the other hand, the alternative is in some sense worse. One need not, in principle, use autocor-
relation to get an unbiased estimate of an asset’s riskiness. One could, instead, calculate independent, 
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Exhibit 21
Autocorrelations for world equities and the CTA index
(Autocorrelation sum = +0.21 for world equities and -0.31 for the CTA index)
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Exhibit 22
Distributions of maximum drawdown depths for return series 
with non-zero autocorrelations

Exhibit 23	
Effects of autocorrelation on performance measures

Annualized 
mean

Annualized 
volatility

Return/risk 
ratio

Without autocorrelation 
corrections

Series A 5% 15.0% 0.33
Series B 5% 15.0% 0.33

With autocorrelation 
corrections

Series A 5% 17.9% 0.28
Series B 5% 9.4% 0.53

Source: Barclay Hedge, Bloomberg, Newedge Alternative Investment Solutions
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non-overlapping n-period returns (where n is long 
enough to include all the correlation lags). But the 
time it would take would be much, much longer 
than is required to work with correlations. To see 
why, consider a simple 1-period lag. In such a case, 
one should be calculating 2-month returns. If they 
are to be non-overlapping, then one would get 6 
observations per year instead of 12. But for them to 
be independent, one would have to skip a month 
between each 2-month return period. If you do 
this, you are down to 4 observations a year. And in 
our case, where the lags seem to stretch out to five 
months, one could really only get one independent 
observation a year. In which case, it would take a 
few decades to learn what would be available in 
only a few years if one were to use autocorrelations 

to augment the standard measures of volatility. 

Where do we go from here?
We are persuaded at this point that the presence of autocorrelated returns helps to resolve the two 
empirical puzzles that prompted this work in the first place. At least one natural extension of this work, 
then, will be to amend our manager evaluation reports to reflect the new drawdown model and to in-
clude some information about autocorrelation in each manager’s returns. 

Timing investments But there are a number of questions that will require some attention. For one, 
we examined the question of whether one could time one’s investments in CTAs using past returns, 
found generally that the answer was no, and published our findings in Every drought ends in a rainstorm. 
The main conclusions were that CTAs’ returns appeared to be uncorrelated through time. Returns con-
ditioned on past returns appear to be the same as unconditional returns. And the numbers of runs 
of gains and losses appeared to be thoroughly consistent with randomness. The data set was small, 
though, and we may arrive at different findings with the broader data sets we have used in this work. 

Drawdown control If returns are autocorrelated, it is possible to improve one’s risk-adjusted returns 
using what is loosely called drawdown control. For return series with positive autocorrelation, a rule 
that reduces position sizes when losing money and increasing position sizes when making money will 
improve risk-adjusted returns. If returns are negatively autocorrelated, the opposite should be true, in 
which case drawdown control would increase position sizes when losing money and would decrease 
position sizes when making money. 

Where does autocorrelation come from? And why is it negative for trend followers? These 
are thorny questions but important to explore. In early conversations about this work, one of the ques-
tions raised was whether autocorrelation was evidence of inefficiency – of money being left on the 
table, or money lost unnecessarily. For that matter, part of the reasoning we used in Every drought ends 
in a rainstorm to explain the absence of conditionality in returns was that active trading, if well done, 
would wring returns from price series that exhibited positive or negative momentum and produce re-
turn series that were free from autocorrelation. 
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 – autocorrelation / 96.0% survival / mean = $1,224

 + autocorrelation / 78.3% survival / mean = $2,519

Source: Newedge Alternative Investment Solutions

Exhibit 24
Probability distributions for ending net asset values 
(5% mean, 15% vol, 270 months)
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Postscript on statistical influences on drawdowns
In Understanding drawdowns, we found that the three most influential variables were length of track 
record, return volatility and mean return. Skewness, which indicates whether upside returns are larger 
or smaller than downside returns, didn’t seem to have much effect. Neither did excess kurtosis, which 
measures the likelihood of unusually large positive or negative returns. 

The reason is most likely the power of the central limit theorem, which states that the sum of enough 
independent random variables will be normally distributed, no matter how each of the individual vari-
ables is distributed. So one can add up the oddest, most peculiar, random variables, and the central 
limit theorem pounds them all into a fairly uniform, normally distributed paste. In fact, skewness and 
kurtosis probably do matter for CTAs with short track records, but only because the central limit theo-
rem has not had time to work its erosive magic. 

In contrast, autocorrelation does not disappear as the track record lengthens. If it’s there, it’s there, 
and becomes more noticeable with the passing of time, not less. The wedge it drives between estimates 
of volatility based on returns for single periods that are shorter than the length of the autocorrelated 
lags and of the asset’s multi-period volatility simply becomes clearer and more pronounced. 
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Appendix: Normalizing world equity and CTA returns so 
that they have equal means and volatilities

The actual net asset value series for World Equity and CTAs are those shown in Exhibit 25. Over this 
period, CTA were the superior asset if compared solely on returns (higher than those on equities) and 
volatility (lower than that of equities). To isolate the effect of autocorrelation on drawdown behavior, 
however, we created two new series that have identical mean returns and return volatilities but that 
preserve the pattern or sequence of returns in each. That is, whatever autocorrelation one would find 
in the original series, one would also find in the modified series. 

To do this requires only two steps. The first is to normalize the original, actual series so it has mean = 0 
and volatility = 1 as follows: 
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where R1t is the original return for month t, µ1 is the average return for series 1, and σ1 is its volatility or 
standard deviation of returns.  The resulting distribution of R2 will now have a mean of zero and a 
standard deviation of 1.0, but the sequence of returns will preserve any aucorrelation that one would find 
in the original series.  The second step simply requires that the second series be converted to a third series 
as follows: 
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Where µ and σ can be any values you choose.  In this note, we arbitrarily chose a mean of 5%, which 
roughly splits the difference between the observed mean returns for CTAs and World Equities, and a 
volatility of 15%, which looks more like equity volatility.  These are the series that we show in Exhibits 1 
and 20.  In the end, we have two series that would have identical means and volatilities (and, as a result, 
identical risk-adjusted returns), so that any difference in drawdown behavior can be attributed only to the 
pattern of returns.   

	
  

Acknowledgements 
 

where R1t is the original return for month t, µ1 is the average return for series 1, and σ1 is its volatility 
or standard deviation of returns. The resulting distribution of R2 will now have a mean of zero and a 
standard deviation of 1.0, but the sequence of returns will preserve any aucorrelation that one would 
find in the original series. The second step simply requires that the second series be converted to a 
third series as follows:

Appendix: Normalizing world equity and CTA returns so that they have equal means and volatilities 
 
The actual net asset value series for World Equity and CTAs are those shown in Exhibit 25.  Over this 
period, CTA were the superior asset if compared solely on returns (higher than those on equities) and 
volatility (lower than that of equities).    To isolate the effect of autocorrelation on drawdown behavior, 
however, we created two new series that have identical mean returns and return volatilities but that 
preserve the pattern or sequence of returns in each.   That is, whatever autocorrelation one would find in 
the original series, one would also find in the modified series.   
 
To do this requires only two steps.  The first is to normalize the original, actual series so it has mean = 0 
and volatility =1 as follows: 
  

 1112 /)( σµ−= tt RR  
 
where R1t is the original return for month t, µ1 is the average return for series 1, and σ1 is its volatility or 
standard deviation of returns.  The resulting distribution of R2 will now have a mean of zero and a 
standard deviation of 1.0, but the sequence of returns will preserve any aucorrelation that one would find 
in the original series.  The second step simply requires that the second series be converted to a third series 
as follows: 
 

tt RR 2333 σµ +=  
 
Where µ and σ can be any values you choose.  In this note, we arbitrarily chose a mean of 5%, which 
roughly splits the difference between the observed mean returns for CTAs and World Equities, and a 
volatility of 15%, which looks more like equity volatility.  These are the series that we show in Exhibits 1 
and 20.  In the end, we have two series that would have identical means and volatilities (and, as a result, 
identical risk-adjusted returns), so that any difference in drawdown behavior can be attributed only to the 
pattern of returns.   

	
  

Acknowledgements 
 

Where µ and σ can be any values you choose. In this note, we arbitrarily chose a mean of 5%, which 
roughly splits the difference between the observed mean returns for CTAs and World Equities, and a 
volatility of 15%, which looks more like equity volatility. These are the series that we show in Exhibits 
1 and 20. In the end, we have two series that would have identical means and volatilities (and, as a re-
sult, identical risk-adjusted returns), so that any difference in drawdown behavior can be attributed 
only to the pattern of returns. 
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