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In the early 1730sThomas Bayes (1701?–1761)was
appointed minister at the Presbyterian Meeting
House on Mount Sion, Tunbridge Wells, a town that
had developed around the restorative chalybeate
spring discovered there by Dudley, Lord North, in
1606. Apparently not one who was a particularly
popular preacher, Bayes would be recalled today,
if at all, merely as one of the minor clergy of
eighteenth-century England, who also dabbled in
mathematics. How is it, then, that Roger Farthing,
author of an excellent history of Mount Sion, could
describe Bayes as “to my mind, the greatest man
to have lived in Tunbridge Wells” ([5, p. 167])? The
answer is fairly simple: Bayesian statistics.

In 1763 Richard Price forwarded to the Royal
Society of London an essay by Bayes [2] in which
the following problem was addressed:

Given the number of times in which
an unknown event has happened
and failed: Required the chance
that the probability of its happen-
ing in a single trial lies between any
two degrees of probability that can
be named.
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The solution, given more geometrico as Proposi-
tion 10 in [2], can be written today in a somewhat
compressed form as

posterior probability ∝ likelihood × prior probability.

Price himself added an appendix in which he used
the proposition in a prospective sense to find the
probability of the sun’s rising tomorrow given
that it has arisen daily a million times. Later use
was made by Laplace, to whom one perhaps really
owes modern Bayesian methods.

The degree to which one uses, or even supports,
Bayes’s Theorem (in some form or other) depends
to a large extent on one’s views on the nature
of probability. Setting this point aside, one finds
that the Theorem is generally used to update
(to justify the updating of?) information in the
light of new evidence as the latter is received,
resulting in a strengthening of one’s belief. Bayes’s
Theorem provides a codification of “learning from
experience”, and The Theory That Would Not Die

is concerned with the investigation and exposition
of situations in which such learning has been both
required and achieved.

A globally acceptable definition of Bayesianism,
or the Bayesian method , seems hardly possible, for
there are perhaps almost as many definitions as
there are practitioners of the art. A useful and
generally acceptable description is given as fol-
lows by Anthony O’Hagan: “The Bayesian method
briefly comprises the following principal steps.
Likelihood …Prior …Posterior …Inference” ([8, p.
10]). It is also considered essential that the prior
probability distributions be explicitly given (if
these distributions are estimated from the data,
the method, developed in the 1950s, is known as
Empirical Bayesianism).
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Laplace initially gave Bayes’s Theorem in a
simplified form as

Pr[Ai|E] = Pr[E|Ai]
/∑n

1 Pr[E|Aj],

where, for instance, Pr[E|Ai] is the probability of
the event E given the cause Ai . This formula was
developed in his later work to the continuous form
one knows today, and he immediately applied it in
his scientific investigations. A large study of births
(more accurately baptisms) in France suggested to
Laplace with strong probability that the chance of
the birth of a boy exceeded that of a girl in Paris
(and similarly in London).

Most statisticians these days are acquainted
with the theoretical aspects of Bayesianism. Less
well known, I suspect, are certain areas of practical
application, and McGrayne’s book is a “find” in
this respect. So many, indeed, are the different
applications considered that we cannot mention
more than a few here.

Despite Laplace’s work, his successors saw little
virtue in Bayesian methods and almost succeeded
in killing them off. One who kept the flickering
flame alight was Joseph Louis François Bertrand
with his work on projectiles for artillery field
officers, and later, in the famous Dreyfus affair,
the defence witness Henri Poincaré strongly sup-
ported the updating of the probability, in the light
of later evidence, of the truth of a hypothesis as
to whether a certain letter was a forgery.

Come the Great War, statisticians in the United
States found themselves using Bayesian methods
in connection with the making of decisions about
injured workers and telephone communications.
Yet these methods did not meet with general
approval: “Early in the twentieth century” writes
McGrayne, “theoreticians would change their atti-
tudes toward Bayes’ rule from tepid toleration to
outright hostility” (p. 45)1.

Sporadic work continued after the war, and in
1925 Egon Sharpe Pearson published a long paper
[9] in which he sought to put the theoretical rule
to the test—“the most extensive exploration of
Bayesian methods conducted between Laplace in
the 1780s and the 1960s” (p. 49). Before the candle
could be entirely guttered, the flame spluttered
up in the work of Èmile Borel, Frank Plump-
ton Ramsey, and Bruno de Finetti and in the
face of strong opposition from Ronald Aylmer
Fisher and Jerzy Neyman. Only the sterling work
of Harold Jeffreys—largely and undeservedly ig-
nored by statisticians—at Cambridge kept the
resuscitation on the go.

Pearson’s idea ran as follows: let a sample of size
n (say of taxicabs in London streets) be observed
in which the number of taxis having registration

1References to page numbers without a citation are to the

book being reviewed.

LX is p and that without is q. Then observe a
further number m with the two numbers being r
and s, respectively. Now repeat this experiment
(with the same numbers n and m) in different
situations, and see whether “the distribution of
observed values of r could be compared with the
theoretical distributions which on Bayes’ Theorem
the knowledge of n and p should enable us to
predict” ([9, p. 396]).

The damage done by German U-boats to Allied
shipping during the Second World War made it
imperative for the Allies to fathom the workings
of the Enigma machines. These machines, used by
the Germans to send encoded messages, became
more and more sophisticated and complicated as
the war progressed. Intensive research by a ded-
icated team under the leadership of Alan Turing
at Bletchley Park in England eventually resulted
in the cracking of the codes (the difficulty was
considerably eased when a code book of encrypt-
ing tables was obtained from a sinking German
submarine off Egypt). McGrayne writes “Turing
was developing a homegrown Bayesian system.
Finding the Enigma settings that had encoded a
particular message was a classic problem in the
inverse probability of causes” (p. 68).

During the war Turing paid a visit to the United
States to discuss the work done at Bletchley Park
with the U.S. Navy cryptographers. However “he
tried in vain to explain the general principle that
confirming inferences suggested by a hypothesis
would make the hypothesis itself more probable”
(pp. 75–6). Here Turing met Claude Shannon, who
was working intensively on information theory.
“Roughly speaking, if the posterior in a Bayesian
equation is quite different from the prior, some-
thing has been learned; but when a posterior is
basically the same as the prior guess, the in-
formation content is low” (p. 77). Turing’s work
was not altogether dismissed, however, for Eisen-
hower later said that “Bletchley Park’s decoders
had shortened the war in Europe by at least two
years” (p. 81).

However, the success achieved by Bayesian
methods during the war was not generally appre-
ciated, it having been decided by those in authority
that such results were to be kept classified. Bayes’s
Theorem was still seen as suspect: “ ‘Bayes’ still
meant equal priors and did not yet mean making
inferences, conclusions, or predictions based on
updating observational data” (p. 87).

Part III of McGrayne’s book records “the glorious
revival”. The first chapter here is devoted to the
work of Arthur Bailey, who made extensive and
important use of Bayes’s Theorem in his work on
credibility in casualty insurance as chief actuary
at the New York State Insurance Department. His
reason for so doing was made quite clear: “It
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will be realized that all of the problems in which
credibilities are used are problems in statistical
estimation” ([1, p. 8]).

Chapter 8 details the entry of Bayesian methods
into medical research, chiefly through the efforts,
McGrayne claims, of Jerome Cornfield. The matter
treated here is the connection of smoking with
lung cancer and, later, heart disease. Small studies
had been carried out before the Second World War,
but the retrospective large study [3] published by
Richard Doll and Austin Bradford Hill in 1950
gave firm (conclusive?) evidence of the connection
between cigarette smoking and carcinoma of the
lung. Doll and Hill, while identifying a seeming
association, were careful to write that, “This is not
necessarily to say that smoking causes carcinoma
of the lung” ([3, p. 746]). In 1962, extending
his important work, Cornfield studied the most
critical risk factors for cardiovascular disease.

Bayesianism was later to be of further use in
the medical context. For example, in the 1990s
it was shown that mass screening of a large
population for a rare disease (AIDS and HIV)
would be unprofitable. As another example, while
the test for the presence in men of high blood
levels of prostate-specific antigen may be very
efficient in identifying men who actually have
prostate cancer, the disease is relatively so rare
that in many, if not most, cases in which positive
test results are returned the patient is found not
to have cancer.

One of the most important situations in which
Bayesianism scores heavily over frequentism is
when there has been no past experience to draw
on. (Here one might mention Good’s paper [6]
on the estimation of the population frequencies
of species. Based on work done at Bletchley Park
during the war, the paper was written in this vein
to avoid Good’s transgressing the Official Secrets
Act). In Chapter 9 McGrayne looks at one im-
portant issue: the probability of a thermonuclear
device exploding by mistake. While information
was sparse, data were available on “the more
dramatic incidents” (p. 122) involving nuclear
weapons between 1950 and 1958. Results of such
studies showed that there was certainly a posi-
tive probability of an accident, and some of the
safety features suggested by the researchers Fred
Charles Iklé and Albert Madansky were eventually
implemented by the military.

While Bayesian and frequency methods some-
times result in the same conclusions, this is not
always the case, and in [4] Edwards, Lindman, and
Savage showed convincingly that in even moderate
sample sizes Bayesian methods (with reasonable
priors) and frequencyp-values could lead to widely
differing conclusions.

As the century progressed, Bayesian methods
became more widely used. In the business field
the prime developers were Howard Raiffa and
Robert Osher Schlaifer. The emphasis was now
switching from (merely) analyzing data to mak-
ing decisions, and McGrayne notes that “some
business Bayesians even dropped the prior odds
called for by Bayes’s rule” (p. 149). Whether such
a move would be accepted as Bayesian might in
fact be denied by many: Jeffreys, for instance,
“was interested in making inferences from sci-
entific evidence, not in using statistics to guide
future action. To him, decision making …was
irrelevant” (p. 57).

Chapter 12 deals mainly with the investigation
into the authorship of some papers published
in The Federalist in 1787 and 1788. Twelve of
these, published anonymously, were known to
be by Alexander Hamilton or James Madison.
McGrayne details the intensive undertaking by
Mosteller and Wallace in the 1950s to attribute
these papers to their correct authors, a task that
tookadecade’sworthofworkonwordfrequencies,
the identification of “markers” (e.g., the presence
of “while” or of “whilst”) and Bayesian analysis.
The prior odds were found, surprisingly, to be
of little effect, and Mosteller and Wallace showed
in [7] that, with “satisfyingly fat” odds, all twelve
papers could be attributed to Madison.

John Tukey’s use of Bayesian methods in
psephology in the United States is dealt with
in Chapter 13. While irritated by the “lack of
methodology for quantifying Bayes’ initial prior”
(p. 168), Tukey (perhaps unstatedly) used a form of
Empirical Bayesianism, with past election results
being used to construct the prior. The analysis,
carried out during several elections, presented
forecasts of an election’s final outcome as the
results were coming in to NBC and turned out to
be surprisingly accurate.

In the 1970s Norman Rasmussen undertook
a study into the safety aspects of the nuclear
power industry. A report issued in 1974 contained
what was clearly a Bayesian investigation using
probability distributions about equipment failure
rates and human error. The report seemed to
be of little effect: in 1979 the core of the Three
Mile Island nuclear-generating Unit 2 was severely
damaged. The Rasmussen report, McGrayne notes,
now seemed prescient (p. 180).

Not all studies initially conceived as being
ideally treated by Bayesian methods were in fact
so eventually carried out. For example, on January
17, 1966, an American B-52 jet carrying four
nonactivated bombs disintegrated in the air while
refueling over the southeastern coast of Spain.
While three of the bombs were found within
twenty-four hours, the fourth proved more elusive.
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John Craven, called in to handle the recovery
operation, set up seven hypotheses (to which
priors were assigned) as to what could have
happened to the missing bomb—e.g., it had fallen
free and would not be found in the debris of the
plane; it had been carried far out to sea as a result
of the deploying of both of the bomb’s parachutes;
a Spanish fisherman had seen the bomb fall into
the sea.

Craven hired a team of mathematicians who
soon discovered from their meetings with the mil-
itary authorities that they had not been employed
to use Bayes’s Theorem and update their prior
distribution. What was wanted was not an expec-
tation that the bomb could be found: rather, “If
the H-bomb was not found, the navy wanted to be
able to prove statistically that it was not there”
(p. 188). The prior probabilities of the hypotheses
were never updated, despite data resulting from a
search of the ocean floor from a ship. Fortunately
optimal search methods eventually resulted in the
desired finding of the bomb.

The final section of the book begins with a chap-
ter in which a number of cases in which Bayesian
methods have been used are fairly briefly dis-
cussed, cases in which the large amount of
experimental data involved urged the develop-
ment of computers and techniques (including
efficient numerical integration procedures) that
could handle such quantities of results. Long and
difficult integrations, it was later realized, could
be replaced by suitable sampling, an observation
that led to the development of Markov chain Monte
Carlo methods. Here a class of algorithms is taken
for sampling from a probability distribution and
based on the construction of a Markov chain hav-
ing a desired equilibrium distribution. As a sample
of the desired distribution, the state of the chain
after a large number of steps is used.

In 1983 the U.S. Air Force sponsored a review
of the estimates made by NASA of the probabil-
ity of a shuttle failure. Using Bayesian methods,
the researchers concluded that the odds on a
failure were 1 in 35, NASA’s estimate being 1 in
100,000. On January 28, 1986, the shuttle Chal-

lenger exploded on launch, a bitter vindication of
Bayesianism.

The reader of The Theory That Would Not Die

will realize that little is said here of prior dis-
tributions per se: most of the applications are
concerned with the gathering of data and subse-
quent prognostication. Nevertheless, the effect of
the prior generally diminishes with an increase in
the amount of data.

McGrayne’s giving the references in separate
sections for each chapter is perhaps unfortunate.
Sometimes things “fall through the cracks”: for
instance, Note 10 to Chapter 16 refers one to

“Smith (1984)”, an item not listed in the bibliog-
raphy to that chapter. Also, the system adopted
makes it difficult to find a reference only vaguely
remembered (was it in the list for Chapter N or
Chapter M?).

For the student who is being exposed to
Bayesian statistics for the first time, McGrayne’s
book provides a wealth of illustrations to whet
his or her appetite for more. It will broaden and
deepen the field of reference of the more experi-
enced statistician, and the general reader will find
an understandable, well-written, and fascinating
account of a scientific field of great importance
today.
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